Digital Twin: how, where and why...

Digital Twin: la strada 4.0 per l’efficienza dei processi e la qualità dei prodotti
2019 07 May

Franco Fummi

Computer Science Department
University of Verona - Italy
Digital Twin: why

Virtual Factory

- Simulation of Production Line
- Analysis & Prediction
- Optimization

Real Factory

Network

Controlling

Sensing

Reconfiguration

2019 07 May
Digital Twin: where

BPMN

MES (ISA-95)

DIN 8580

<AutomationML/>

B2MML (ISA-95) Production Recipe

Plant Topology

Equipment Functionality

Vendor Specific Equipment

Objects Relations

Architecture & Processes

Machine 1 Contracts

Machine 2 Contracts

Machine 3 Contracts

Machine N Contracts

Verification & Synthesis

Digital Twin Executable Models

2019 07 May
DEFINING AND INTEGRATING MODELS
Business Process Model

Activities

- **Task**: A Task is a unit of work, the job to be performed.
- **Transaction**: A Transaction is a set of activities that logically belong together.
- **Event Sub-Process**: An Event Sub-Process is placed into a Process or Sub-Process. It is activated when its start event gets triggered and can interrupt the higher level process context or run in parallel (non-interrupting) depending on the start event.
- **Call Activity**: A Call Activity is a wrapper for a globally defined Sub-Process or Task that is reused in the current process.

Gateways

- Exclusive Gateway - without Marker
- Exclusive Gateway - with Marker
- Event-based Gateway
- Parallel Gateway
- Inclusive Gateway
- Complex Gateway
- Exclusive Event-based Gateway
- Parallel Event-based Gateway

Swimlanes

- **Pools and Lanes**: Pools and Lanes represent responsibilities for activities in a process.
- **Message**: The order of message exchanges can be specified by combining message flow and sequence flow.
- **Receive Task**: Others
- **Send Task**: Others
- **Message**: Receiving and sending messages.
- **Timer**: Others

Others

2019 07 May

Digital Twin
ISA-95: Functional Hierarchy Levels description

Level 4

Business Planning & Logistics
- Plant Production Scheduling, Operational Management, etc

Time Frame:
- Months, weeks, days, shifts

Level 3

Manufacturing
- Operations & Control
- Dispatching Production, Detailed Production Scheduling, Reliability Assurance, ...

Time Frame:
- Shifts, hours, minutes, seconds

Level 2,1,0

SCADA PLC
- Batch Control
- Continuous Control
- Discrete Control

Time Frame:
- Months, weeks, days, shifts

ERP

Time Frame:
- Basic Plant Schedule- Production, material use, Delivery and Shipping

MES

Time Frame:
- To produce desired end-products. Maintaining records and optimizing the production process.
B2MML as a Solution

- **B2MML**: Business to Manufacturing Markup language
 - Implementation of ISA-95 in XML
 - XML elements which comprise information
 - Providing a generic / common / extendable platform
 - For data exchange between scheduling component and manufacturing environment
3.2.2.1. (DIN) 1.1.1.1.2.1. (Todd) **Drilling**
Drilling for making cylindrical hole

3.2.2.2. (DIN) 1.1.1.1.1.2. (Todd) **Boring**
Boring for enlarge drilling hole

3.2.2.3. (DIN) 1.1.1.1.2.2. (Todd) **Reaming**
Reaming for finishing hole or slightly remove material from hole

3.2.3. (DIN) **Milling**

3.2.5. (DIN) **Countersink**

3.3.1. (DIN) **Grinding with rotating tool**

2019 07 May

Digital Twin
Simulation Infrastructure

- Several tools to model & simulate production lines (Siemens, FlexSim, Simio, Simul8 ecc..)
- Easy and really intuitive to use (Drag & Drop components from a library)

High level of abstraction ➔ Fast simulation but... **Loss of details!**

Integration of

- Models/Contracts
- Temporal Series
- Real Equipment
Standards for Models Integration

• Model encapsulation
 – FMI Standard
 – OPC-UA

• Functional Mockup Interface (FMI)
 – Standard interface to exchange models

• OPC-UA
 – Machine to machine communication protocol for industrial automation
Automation Markup Language (AML)

- **AutomationML**
 - a neutral data format based on XML for the storage and exchange of plant engineering information
 - it is provided as open standard
 - to interconnect heterogeneous tools

- **Mapping from the AML domain to the OPC UA domain**
OPC-UA Server Design

1. Interface Definition (AutomationML)
2. AutomationML to OPC-UA Information Model
3. FMU Generation
4. FMU Integration in OPC-UA Server
OPC-UA Server for a Real Equipment

1. Interface Definition (AutomationML)
2. Equipment Classification (ISA-88/95)
3. OPC-UA Information Model Generation (Step 1 + Step 2)
BOX-IO

- BOX-IO is a data aggregator
 - it can be connected to nodes that can be sensors and actuators
- The «heart» of BOX-IO software is eLSE
- eLSE is composed of three parts:
 - Frontend Layer for interaction with the application and the site for example
 - Data model Layer for modeling data
 - Backend Layer for interacting directly with the devices
- The three levels can communicate with each other
BOX-IO as a Link to Cloud

- It can be placed in the plant as an advanced equipment
- At different levels of the automation hierarchy
FROM CONTRACT TO MODELS
Machine library of A/G contracts

Machine: 1

Actions from DIN Taxonomy: 2

Elementary actions: 3

A/G Contracts Library: 4

DIN Taxonomy

Machine Capabilities

Action1 Action2 ... ActionN

Assumptions

Guarantees

Plant Environment

Machine Behaviours (Actions)

2019 07 May
Library example: Milling machine

Machine: 1

Actions from DIN Taxonomy: 2

Elementary actions: 3

A/G Contracts Library: 4

Machine library

- Drilling A/G Contract
- Boring A/G Contract
- Reaming A/G Contract
- Milling A/G Contract
- Countersink A/G Contract
- Broaching A/G Contract

Digital Twin

2019 07 May
Simulation example of a Production Line
FROM TEMPORAL-SERIES TO MODELS
Black-box Discovery of the Control Algorithm

- Main steps are:
 - Export the dataset
 - Build of the trained classifier
 - Implement in system
 - Optimize the classifier
 - Generate the code
Export dataset

- Use Simulation Data Inspector
 - Observe the interested signals
 - Export and save them in the Matlab workspace
 - Export the data in a CSV-file
Build the trained classifier

Manual method

Statistics and Machine Learning Toolbox

- Import Dataset
- Build the various classifiers with their confusion matrix
- Compare the confusion matrices graphically
- Or calculate accuracy, precision and recall and choose the best classifier

Automatic method

Classification Learner App

- Import dataset
- Try it on all types of classifiers
- Choose the best classifier

NEW CONTROLLER

2019 07 May
Implementation in the system

- Put the classifiers in
 - **M-function** blocks
 - **S-function** blocks

- Simulating the same result is obtained with the M-functions
- The S-function is **faster** than M-function

```matlab
function OPEN_CLOSE = fcn(u1, u2, ...)
persistent mdl;
if isempty(mdl)
    mdl = loadCompactModel('my_classifier.mat');
end
OPEN_CLOSE = int8(predict(mdl,[u1, u2, ...]));
end
```
Code generation

- From M-file to C-file
 - MATLAB Coder
 - Simulink Coder

```matlab
function OPEN_CLOSE = fcn(u1, u2, ...)
persistent mdl;
if isempty(mdl)
    mdl = loadCompactModel('my_classifier.mat');
end
OPEN_CLOSE = int8(predict(mdl, [u1, u2, ...]));
end
```

classifyX.m
BOX-IO-based Implementation
BOX-1O

HTTP
WEBSOCKET
MQTT
RULE ENGINE
ZIGBEE
MODBUS
OPC-UA
CONTROLLER (CLASSIFIER)

Digital Twin
2019 07 May
EXEMPLIFICATION ON THE ICE LABORATORY
ICE Laboratory - Where

Location available starting from the end of July 2019
ICE Laboratory - System Architecture

Enterprise Resource Planning (ERP) | Cloud Application | UniVR Comp. Platform

Manufacturing Execution System (MES)

SCADA

Digital Twin

Physical Laboratory

2019 07 May
ICE Laboratory – Digital Twin Focus
ICE Laboratory – Robots and Devices
ICE Laboratory – Sensors/Cloud Architecture

UniVR Computational Platform

Cloud Application (MindSphere)

Digital Twin Tecnomatix Plant Simulation

OT Networks

Fiber Network

IT/OT Gateway

Cloud Gateway

OT Networks

PLC

OPC UA Module

Industrial Wireless

Controller

IloT machinery

Legacy Machinery

IoT Sensors

Mobile Robots

Tracking System

2019 07 May

Digital Twin
UniVR Computational Platform

Composed of two kind of nodes managed by **OpenStack**

- **HPC node**
 - *CentOS 7* available to end-user
 - *Slurm* workload manager
 - *launch/schedule* tasks with specific HW resources
 - *Not supported* by all applications

- **Cloud node**
 - dedicated to host *Virtual Machines*
 - a running VM *meets loose real time* requirements
 - less *processing power* if compared with *HPC*
Industrial Advisory Board (IAB) - Opportunities

• A group composed of more than 35 companies
• Established for Computer Engineering for Industry 4.0 project

• Companies are actively participating in our project by
 – suggesting ICE lab components
 – giving opinions over the new Master’s Degree
 – developing new teaching modules to train students, employees, customers
 – getting the annual research reports over Industry 4.0 technologies
 – testing new technologies on the ICE lab after its construction
Industrial Advisory Board (IAB) - Composition

• IAB contains companies of different categories:

 – Industrial Automation
 – Software House
 – Buildings
 – Media and Communications
 – Engineering
 – System Integrator
 – Automation
 – IT consulting
 – Manufacturing
 – Food and Beverage
 – IT Hardware